GLAST MOC

Coding Standards

and

Style Guide

compiled by

Eric Martin and Marilyn Mix

Omitron, Inc.
TABLE OF CONTENTS

51.
C/C++/Java Coding Standard

51.1.
Introduction

51.2.
File Organization

91.3.
Naming Conventions

111.4.
Style Guidelines

191.5.
Recommended Programming Practices

261.6.
Additional Coding Standards and Style Guides

272.
Perl Coding Standard

272.1.
File Organization

282.2.
Naming Conventions

292.3.
Style Guidelines

333.
Tcl/Tk Coding Standard

333.1.
File Organization

343.2.
Naming Conventions

343.3.
Style Guidelines

363.4.
Additional Style Guides

1. C/C++/Java Coding Standard

1.1. Introduction

The purpose of these coding standards is to facilitate the maintenance, portability, and reuse of custom C, C++, and Java source code developed for the GLAST project. These standards were developed from a variety of sources, including other standards documents, software examples from defacto standard language references, and personal experience. As with any guidelines, there will be circumstances where full compliance is not desirable for efficiency, maintainability, or other reasons. In these cases, conformance should not be pursued simply for the sake of meeting the standards.

When the standards are not followed, add a comment with the reason for non-conformance.

New code should conform to the new standards when practical (documenting any non-conformance as stated above). Modifications to existing code may conform to its style as long as it follows good programming practice. Language specific information will be denoted by parentheses containing the name of the language. Within tables, "n/a" denotes "not applicable".

1.2. File Organization

1.2.1. File Contents

Files should be used to organize related code modules, either at the class (for C++ and Java) or function (for C) level.

(Java) A .java file is used for a class. A "main" is used with the primary class.

(C++) Class (or struct) definitions and prototypes should be in the header file (.h). Function implementations often will be in the implementation file (.cpp, or .C, etc.).

(C) Any struct must be in the header file (.h). Function prototypes must be used, and will be in the header file also. Function definitions will be in the implementation file (.c).

1.2.2. Source File Layout

Source files should contain the following components in the order shown in the table below (if they are used). Some are sections in themselves (like classes) and may have separate ordering within that scope. Some components may show up in a code block for purposes of scope.

The CVS Id and $Name$ keywords must be assigned to a string rather than just residing in a comment line. This string must be displayed for interactive applications and logged to the process's log file. The Unix what command can also be used to determine the versions of all files used to create the executable. This is required to implement software version auditing as described in the GLAST MOC CM Plan.

	File contents
	C
	C++
	Java

	CVS Keywords
	X
	X
	X

	prolog
	X
	X
	X

	package imports
	n/a
	n/a
	X

	system #includes
	X
	X
	n/a

	application #includes
	X
	X
	n/a

	external functions
	X
	X
	n/a

	external variables
	X
	X
	n/a

	constants
	X
	X
	X

	static variable initializations
	X
	X
	X

	class declaration
	n/a
	n/a
	X

	public methods
	n/a
	X
	X

	protected methods
	n/a
	X
	X

	private methods
	n/a
	X
	X

	functions
	X
	X
	n/a

	Change History
	X
	X
	X

· (C, C++) When it's possible to put a needed #include line in the source file instead of in the header file, do so. This will reduce unnecessary file dependencies and save a little compile time. [For example, put the reference in the source file if the #include file is only needed in the implementation and not for the class declaration or function prototypes.]

1.2.2.1. CVS Keywords

(C,C++) The CVS keywords are defined in a statement shown in the example. Once the file is checked into CVS the keywords will be expanded to contain the current revision number and modification date as well as Release and Build designations. Refer to the MOC CM Plan for the current format.

const char Release[]="@(#) Id $Name$";

The change history is provided by the log message entered by the developer when the file is checked into CVS. CVS provides the revision number, modification date and the account name. The change history is placed as the end of the file so that the developer doesn't have to wade through pages of change history before reaching the code. An example of the log keyword is shown below. CVS replaces the Log keyword with the log messages.

// Change History:

// Log
1.2.2.2. Source File Prolog

The file prolog template is shown below. Describe the overall purpose of the code in the file. How it relates to the rest of the system. List an assumptions and maintenance hints. The audience of the prolog is the next developer who must make changes to this file (even if that developer is the author 6 months later.) Include any information that is not obvious. Spell out acronyms and refer to any applicable interface control documents.

// File:

//

// Description:

//

// Author:

// Date:

//

// Notes:

1.2.3. Header File Layout

Header files should contain the following components in the order shown in the table below (note that Java does not use header files). Some are sections in themselves (like classes) and may have separate ordering within that scope.

	File contents
	C
	C++
	Java

	file guard
	X
	X
	n/a

	CVS keywords
	X
	X
	X

	prolog
	X
	X
	n/a

	system #includes
	X
	X
	n/a

	application #includes
	X
	X
	n/a

	#defines
	X
	X
	n/a

	macros
	X
	X
	n/a

	external functions
	X
	X
	n/a

	external variables
	X
	X
	n/a

	constants
	X
	X
	n/a

	structs
	X
	X
	n/a

	Forward declarations
	X
	X
	n/a

	Class declaration
	n/a
	X
	n/a

	Public methods
	n/a
	X
	n/a

	Protected methods
	n/a
	X
	n/a

	Private methods
	n/a
	X
	n/a

	Inline method definitions
	n/a
	X
	n/a

	Functions
	X
	X
	n/a

	Change History
	X
	X
	X

· (C++) Small inline methods may be implemented in the class definition.

1.2.3.1. Header File Guard

(C,C++) All header files should contain a file guard mechanism to prevent multiple inclusions. This mechanism is implemented as shown by the following lines:

#ifndef MeaningfulNameH // first line of the header file

#define MeaningfulNameH // second line of the header file

.

. // body of the header file

.

#endif // MeaningfulNameH // last line of the header file; note comment

1.2.3.2. CVS Keywords

(C,C++) The CVS keywords are defined in a statement shown in the example. Once the file is checked into CVS the keywords will be expanded to contain the current revision number and modification date as well as Release and Build designations. Refer to the MOC CM Plan for the current format.

const char Release[]="@(#) Id $Name$";

The change history is provided by the log message entered by the developer when the file is checked into CVS. CVS provides the revision number, modification date and the account name. The change history is placed as the end of the file so that the developer doesn't have to wade through pages of change history before reaching the code. An example of the log keyword is shown below. CVS replaces the Log keyword with the log messages.

// Change History:

// Log
1.2.3.3. Header File Prolog

The file prolog template is shown below. Describe the overall purpose of the code in the file. How it relates to the rest of the system. List an assumptions and maintenance hints. The audience of the prolog is the next developer who must make changes to this file (even if that developer is the author 6 months later.) Include any information that is not obvious. Spell out acronyms and refer to any applicable interface control documents.

// File:

//

// Description:

//

// Author:

// Date:

//

// Notes:
1.3. Naming Conventions

The following table summarizes the naming conventions:

	Identifier
	C
	C++
	Java

	package
	n/a
	shortname

	class, union, struct
	MeaningfulName

	interface
	n/a
	MeaningfulActionable

	typedef
	MeaningfulName
	n/a

	enum
	n/a
	MeaningfulName
	n/a

	pointers
	namePtr
	namePtr
	n/a

	function, method
	meaningfulName

	class attribute
	n/a
	meaningfulName_

	accessor method
	n/a
	getX, setX

	object, variable
	meaningfulName

	#define, macro
	MEANINGFUL_NAME
	n/a

	const, static final variable
	MEANINGFUL_NAME

	source file
	.c
	.cpp
	.java

	header file
	.h
	n/a

1.3.1. Descriptive Names

Names should be readable and self-documenting. Abbreviations and contractions are discouraged. Shorter synonyms are allowed when they follow common usage within the domain.

1.3.2. Valid Characters

All names should begin with a letter. Individual words in compound names are generally differentiated by capitalizing the first letter of each word. The use of special characters (anything other than letters, digits and underscores) is discouraged.

1.3.3. File Names

Filenames should only contain one period, to separate the file extension.

1.3.4. Function Names

Function names should preferably be an action verb. Boolean-valued functions may be clearest with the "is" prefix as in "isEmpty()".

1.3.5. Class Attribute Names

Although not mandatory, a post-fix underscore (trailing underscore) is helpful because it differentiates it from normal automatic variables within methods. Do not use underscores as a prefix because some compilers use preceding underscores to generate their own symbols, etc.

1.3.6. Namespaces

(C++) The C++ reserved word namespace is not supported by many compilers, although it soon will be. So avoid using it until all the compilers on this project support it.

(C++) Try to put enums in the class where they belong (e.g. file states would go in a file object) and if they are needed outside of that class, then put the enums in the public section and use the scope operator. This keeps the global namespace from getting polluted with everyone's enum definitions. If the enums apply to multiple objects you can have a class that is dedicated to putting your otherwise global enums in.

(Java) Namespace collision should be minimized without using Java package constructs.

(Java) Create a new Java package to group classes of related functionality. Package source and class files then reside in a convenient hierarchical directory structure that maps directly to the package name.

1.4. Style Guidelines

The primary purpose of style guidelines is to facilitate long-term maintenance. During maintenance, programmers who are usually not the original authors are responsible for understanding source code from a variety of applications. Having a common presentation format reduces confusion and speeds comprehension, so this is a good goal. Many files already differ in style, as will inevitably happen on a large project. It is suggested that you notice the style used in the surrounding code and when reasonable, adopt the conventions within that file (use tabs, if the file has tabs, use spaces if the file has spaces, etc.). Also, remember changing a file's style globally can cause problems when doing a diff. So keep these tradeoffs in mind when making modifications.

1.4.1. Lines

1.4.1.1. Line Length

All lines should be displayable without wrapping on an 80-character display. If wrapping is required, try to break at an operator, and start the next line with the operator vertically aligned. For example:

cout << "This is an example of a line which must be wrapped, value = "

 << value << endl;

Alternatively, for this line, you might do this:

cout << "This is an example of a line which must be wrapped, value = ";

cout << value << endl;

1.4.1.2. Statements Per Line

Understandability is the key here. If it is clearer to use only one statement, do so. If it is more understandable to have more than one, do so. But don't make the decision just because it's easier. Keep our code as understandable as possible.

1.4.2. Comments

1.4.2.1. Automated Documentation Comments

Many different tools use different conventions for flagging comments for it to automatically use. Since a tool hasn't been found (and one looked at seriously does not use the /** convention) there is no reasonable convention to adopt as of yet. When such a tool is chosen, this document should be updated.

1.4.2.2. Code Comments

There is a blurry line between cluttering up your code, and putting meaningful comments in. Try to comment in such a way that keeps the code as clean as possible. One way to do this is to place comments that describe the purpose of the function/method/subroutine in the subroutine prolog. Discuss the implementation if it is non-trivial. For example, tell the reader if you are using a known algorithm such as a red-black tree or hash table. If you are doing something unusual, describe it as a narrative.

Place comment with in the code to help the reader follow the processing flow. Assume the reader knows the programming language. Be specific. Don't just say "read the file", but elaborate by saying "read the descriptor record from the orbit data file".

In general, brief comments regarding individual statements may appear at the end of the same line, and should be vertically aligned with other comments in the vicinity for readability.

(C) comments should use the standard C comment delimiters /* and */. Since this is all C supports, this seems like a reasonable standard.

(C++) Code comments should use the single line comment delimiter //. When it makes sense to do so, the block comments of the C style may be used. But remember, the C style comments cannot be nested. In general, it is safer to use the newer style //.

(Java) Code comments should use the single line comment delimiter //.

1.4.2.3. Blank Lines

If it makes the code more readable, use a single blank line to separate logical groups of code to improve readability.

In source files, use two blank lines to separate each function definition, or in some way make it easy to tell where the new function begins.

1.4.3. Formatting

1.4.3.1. Spacing Around Operators

(C++) Do not use spaces around the scope operator ::. Aside from the unusual esthetics caused by this it also precludes one doing an editor search of the form Class::method.
(C++, Java) Do not use spaces around the member access operators . and ->. This is also sometimes searched for.

1.4.3.2. Indentation and Braces

The contents of all code blocks should be indented to improve readability. A single tab or four spaces are recommended as the standard indentation. Braces should be placed to show the level of indentation of the code block. Where you put the braces is not too important. Make it as readable as possible. There are pros and cons to placing the open curly brace at the end of the line or on its own line. Some editors help you keep track of nesting by showing the line containing the opening brace. If the brace is on its own line, then there is no context for the control statement that the closing brace matches. On the other hand, some developers find it easier to keep track of nesting by lining up the open and closing braces. Chose the one you find easier to work with and be consistent. As mentioned above, though, conform to the existing format when modifying existing code.

	int main() {

 doSomething();

}
	int main()

{

 doSomething();

}

	struct MyStruct {

 int x;

 int y;

}

	struct MyStruct

{

 int x;

 int y;

}

	if (value == 0) {

 doSomething();

} else if (value == 2) {

// note position of cascaded if

// statement

 doSomething2();

} else {

 if (value2 == 0) {

 doSomething3();

 } else {

 value++;

 }

}

	if (value == 0)

{

 doSomething();

}

else if (value == 2)

{

 doSomething2();

}

else

{

 if (value2 == 0)

 {

 doSomething3();

 }

 else

 {

 value++;

 }

}

	while (value < 300) {

 doSomething();

}

	while (value < 300)

{

 doSomething();

}

	do {

 doSomething();

} while (value < 300)

// note: ending brace and control on same line

	do

{

 doSomething();

}

while (value < 300)

	switch (value) {

case 1:

 doSomething();

 break;

case 2:

case 3:

 doSomething2();

 break;

default:

 break;

}

	switch (value)

{

 case 1:

 doSomething();

 break;

 case 2:

 case 3:

 doSomething2();

 break;

 default:

 break;

}

1.4.4. Statements

1.4.4.1. Control Statements

In general, all control statements should be followed by an indented code block enclosed with braces, even if it only contains one statement. This makes the code consistent and allows the block to be easily expanded in the future. For example:

if (value == 0) { // right

 doSomething();

}

if (value == 0) doSomething(); // not recommended - no block, not indented

if (value == 0)

 doSomething(); // not recommended - no block

1.4.4.2. Conditional Statements

Conditional statements found in if, while, and do statements should be explicit based on the data type of the variable being tested. For example:

· (C++)

int value = getValue();

if (value == 0) { // right

 doSomething();

}

if (!value) { // wrong - not explicit test

 doSomethingElse();

}

bool value = getValue(); // could be RWBoolean too.

if (!value) { // right

 doSomethingElse();

}

· (Java)

boolean value = getValue();

if (!value) { // right

 doSomethingElse();

}

1.4.4.3. Include Statements

(C,C++) For both source and header files, #include statements should be grouped together at the top of the file after the prolog. Includes should be logically grouped together, with the groups separated by a blank line. System includes should use the <file.h> notation, and all other includes should use the "file.h" notation. Path names should never be explicitly used in #include statements (with the exception of vendor library files such as Motif), since this is inherently non-portable. For example:

#include <ltstdlib.h> // right

#include <ltstdio.h> //

#include <ltXm/Xm.h> //

#include "meaningfulname.h" //

#include "/proj/util/MeaningfulName.h" // wrong -

 // Explicit path,

#include <ltstdlib.h> // Out of order,

#include </usr/include/stdio.h> // Path for

 // system file,

#include "Xm/Xm.h" // Local include

 // of library file

1.4.5. Declarations

1.4.5.1. Variable Declaration

Each variable should be individually declared on a separate line. Variables may be grouped by type, with groups separated by a blank line. Variable names should be aligned vertically for readability. There is no required ordering of types, however some platforms will give optimal performance if declarations are ordered from largest to smallest (e.g., double, int, short, char).

int* a; // right

int b; //

int c; //

double d; //

double e; //

double a; // right

int b; //

int* a, b, c; // wrong - not individually declared, not

 // on separate lines

int* a, // wrong - not individually declared

 b, //

 c; //

The two preceding examples are prone to error; notice that a is declared as a pointer to integer and b and c are declared as integers, not as pointers to integers.

(C++) Avoid using a pointer if a reference will work well. While pointers are the most flexible, they are also the most error prone. Avoid using a reference or a pointer if an automatic (local) variable will work well. Again, these are less error prone, even though references are quite safe.

1.4.5.2. External Variable Declaration

(C, C++) All external variables should be placed in header files. The actual allocation should take place in the implementation file (.c / .cpp). In general, the use of global variables is discouraged (consider creating a singleton class).

1.4.5.3. Enumerated Type Declaration

(C++) In general, the enum type name and enumerated constants should each reside on a separate line. Constants and comments should be aligned vertically. (See example below.)

(C++) In general, the enum should be within a class. If the user of your class needs direct access to it, then put it in the public section and the user will then simply have to scope it with your class name. This will help reduce the pollution of the global namespace.

(C++) Consider using explicit values if these values might be saved to permanent store. If they are not explicit, then they will change if someone inserts a new value. Then, when the values are restored, they may not match the newer enum. In these cases, explicit assignment may help keep the sanity of data on permanent store.

enum CompassPoints { // Enums used to specify direction.

 North = 0, // explicit values are not necessary

 South = 1,

 East = 2,

 West = 3

};

1.4.5.4. Class, Struct, and Union Declarations

Keep in mind that, technically, a class and a struct are identical, except the class default access is private, while the struct default access is public. If an access modifier (public:, protected: and private:) is used immediately following the first open brace, then a struct and a class are identical. But in the practical world, they are often treated differently. A struct is often treated as the C style struct, with all its weaknesses. For this reason, it is advisable to try to decide what concept you are dealing with and make a class, with its associated behaviors (methods), to represent that concept.

(C,C++) In general, the type name and members should each reside on a separate line. This format separates the members for easy reading, is easy to comment, and eliminates line wrapping for large numbers of members. Consider commenting each concerning what it is, and units if applicable. Members and comments should be aligned vertically. The following is an example:

struct MeaningfulName { // This is a struct of some data

 // Access defaults to public for a struct

 int firstInteger; // This is the first int

 int secondInteger; // This is the second int

 double firstDouble; // This is the first double

 double secondDouble; // This is the second double

 // You may have member functions for a struct

};

(C++, Java) You should use comments when helpful. For example:

class Value : public BaseValue {

public:

 Value(); // Default constructor

 Value(const Value& oldValue); // Copy constructor

 virtual ~Value(); // Destructor

 void setValue(const int newValue); // Set value

 int getValue() const; // Get value

 int someServiceOfValue(); // meaningful description of this

 // service

protected:

 void incrementValue(); // Increment value

private:

 int someValue; // meaningful description of someValue

};

(C++) All class definitions should include a constructor (either default, or at least parameterized one [see section on Default Constructors]), (virtual) destructor, copy constructor and operator=. If the class has a pointer, provide a deep copy constructor (i.e., allocates memory and copies the object being pointed to, not just maintains a pointer to the original object). If any of these four are not currently needed, create stub versions and place in the private section so they will not be automatically generated, then accidentally used. (This protects from core dumps and other errors.) It is advisable to put the public section first since the class should represent a concept and the public section holds the services of that concept. The user should not have to know the implementation details. It is suggested that friend declarations appear before the public section. All member variables should be either protected or private. It is recommended that definitions of inline functions follow the class declaration (in the .h file), although trivial inline functions (e.g., {} or { return x; }) may be defined within the declaration itself. Alternatively, definitions of inline functions could go into a completely separate file (possibly using .hpp as the extension).

1.4.5.5. Function Declaration

(C, C++) All functions must be prototyped, with the prototypes residing in header files. If this is not done (especially in C) the parameters may not get checked at compile time opening the door wide for run-time errors. In general, each class (or struct) will have its own header file (.h) and implementation file (.cpp)

(C, C++) All parameters should either have a meaningful name (even in the prototype) or the use of the parameter must be very clear by the type name. For example, "int" does NOT make the use clear, so you must have something like "int count" that makes the use much more clear.

1.4.6. Prologues

The purpose of the file prologue is to provide both users and maintainers of the code with a better understanding of what the code does than if they had only the code itself to go by. Prologues need only contain the following information:

· The name of the file. (Not necessary in Java since the file and class names must match)

· The name of the original author of the file.

· The date created.

· A "big-picture" description of code.

· Modification information (including date and any pertinent information on the modification). When using CVS for configuration control, use the Log keyword so that the log info entered when the file is committed will be included in the file text.

What the Description Should Contain:

The most important item of information is the description. This is the developer's primary avenue for explaining why the code was developed and how it fits into the process, subsystem, or library of which it is a part. Don't include details that are better left as method or function descriptions, or as block comments within the code itself. The description should be as short or as long as is necessary, although one to three paragraphs should cover the majority of files.

The focus of the prologue differs somewhat depending on language:

Languages using two files - C, C++

For header or include files, the description should focus on how the class or functions should be used. For source files, the description should focus on how the class or functions are implemented - algorithms, design patterns, etc.

Languages using one file - Java

The description should cover both how the class should be used as well as information about how it is implemented. Appropriate information would include the overall design pattern used, suggestions for reuse, and underlying algorithms.

(Java) A sample Java prologue follows:

/**

 * An applet for doing something. A description should be given that

 * will give the user enough information to understand the basics

 *

 * @see GraphUI

 * @see DataSource

 *

 * @version Original 12/15/95

 * @version Revised 1/27/96 Don't show() ui when first constructed.

 *

 * @author

 * @author Contains snippets of a simple applet.

 */

(C) You may use the applicable fields from the C++ prologue.

(C++) The suggested prologue format is shown below. Filename should be first. Short fields (like Author) should go near the top. Sections of the prologue that could contain paragraphs (like modifications and description) should go after the shorter ones. Here's an example:

/***

Filename: MyClass.h

Author: Pat Programmer

Created: Jun 17, 1997

Description

===========

This class accomplishes the goal of having an example prologue and

may be used to copy from.

Modifications

=============

Pat Programmer; Jun/23/1997; Added insert

Tina Codewriter; Sep/19-26/1997;

Fixed bug that caused problem X.

Added feature Y

***/

Other fields that one might find helpful include: Restrictions and Future Work.

1.5. Recommended Programming Practices

1.5.1. Placement of Declarations

Local variables can be declared at the start of the function, at the start of a conditional block, or at the point of first use. However, declaring within a conditional block or at the point of first use may yield a performance advantage, since memory allocation, constructors, or class loading will not be performed at all if those statements are not reached.

1.5.2. Switch Statements

Specify a break statement after every case block unless the break would cause unreachable code (like after a return) or unless you intended on falling through to the next case (e.g. using multiple labels for the same action). In most cases, it is recommended that a default case be defined.

1.5.3. Return Statements

Where practical, have only one return from a function or method as the last statement. Otherwise, minimize the number of returns. Possibly highlight returns with comments and/or blank lines to keep them from being lost in other code. Multiple returns are generally not needed except for reducing complexity for error conditions or other exceptional conditions.

1.5.4. Casts

Avoid the use of explicit (older style) casts except where unavoidable, since this can introduce run-time bugs by defeating compiler type-checking. Working with third-party libraries (e.g., X or Motif) often requires the use of casts. When you need to cast, document the reasons.

(C++) When possible, and when supported by all compilers on the project, use dynamic_cast, static_cast, const_cast, reinterpret_cast as these are much less error prone, and allow some checking to be done.

1.5.5. Literals

Use constants instead of literal values wherever reasonable. For example:

const double PI = 3.141592; // right

const char APP_NAME = "ACME Spreadsheet 1.0"; // right

area = 3.141592 * radius * radius; // not recommended

cout << "ACME Spreadsheet 1.0" << endl; // not recommended

1.5.6. Explicit Initialization

In general, explicitly initialize all variables before use.

It is mandatory that you initialize all pointers immediately (upon creation) to 0 or to point to an object. Do not allow a pointer to have garbage in it or an address that should no longer be used.

1.5.7. Constructs to Avoid

(Many of these are C++ specific)

The use of #define constants is discouraged, using const is recommended instead. Defining a value as a const allows the value to be visible in a debugger.

The use of #define macros is discouraged, using inline functions is recommended instead.

The use of typedef is discouraged when actual types such as class, struct, or enum would be a better choice..

The use of extern (e.g., global) variables is strongly discouraged. Use a singleton class instead.

The use of longjmp is strongly discouraged. Exceptions are safer, and can easily be used in their place.

If you have access to some kind of string class, use this instead of char * and heap memory. They are a lot less prone to errors (use the Standard C++ Library's string class).

The use of goto statements is not allowed.

Avoid declaring exceptions (this is not referring to declaring the exception classes themselves, but rather to declaring what possible exceptions a particular function may throw.) See section on exception handling.

1.5.8. Inheritance

(C++, Java) Inheritance as a construct is not too hard to understand, but understanding when to use it is more difficult. If it is used when it shouldn't, the code because very fragile (easily broken) by small changes. Question its use carefully each time. Consult others on the project and consult books if you would benefit from a better understanding. In general, be sure that when you use inheritance, the child class (doing the inheriting) absolutely is a specialization of the parent class. It must not be simply similar to it. A Stack is not an array. So it would be very inappropriate to create a stack that inherits from an array, even though some of the concepts are similar. It would be fine to implement the Stack by using the Array, but not by inheriting it. On the other hand, a Car is absolutely a specific kind of Vehicle (we say it "is a" Vehicle… thus the phrase "is-a relationship"). So it's very appropriate for a Car to inherit from Vehicle.

1.5.9. Debug Compile-time Switch

(C,C++) Code used only during development for debugging or performance monitoring should be conditionally compiled using #ifdef compile-time switches. These should not be present in the include files (because it is too easy to have a library get out of synch' with the programs that use it). The recommended symbols to use are DEBUG and STATS, respectively. Debug statements announcing entry into a function or member function should provide the entire function name including the class. For example:

#ifdef DEBUG

cout << "MeaningfulName::doSomething: about to do something" << endl;

#endif

1.5.10. Memory Management

(C++) Use new and delete instead of malloc/calloc/realloc and free. Use the delete [] operator to deallocate arrays (deleting arrays without the brackets has undefined results). After deletion, set the pointer to zero, to safeguard possible future calls to delete. C++ guarantees that delete 0 will be harmless. When the pointer is going out of scope it might be okay to not set it to zero, but remember, static variables never go out of scope. (They may go out of access scope, but they never go out of, what I call life scope, that is, its value is held and could be used later.)

(C++) Follow these three rules for general memory handling:

1. Set pointers to null, or cause them to point to something valid immediately upon their creation.

2. When they are no longer pointing to something useful, be sure they are set to zero.

3. Use delete on all pointers in your destructor.

1.5.11. Constructors

(C++) All constructors should initialize all member variables to a known state. This implies that all classes should have a default constructor (i.e., MyClass();) defined. Providing a deep copy constructor (where applicable) is strongly recommended. If the programmer wishes to not fully implement a copy constructor or a default constructor, then they should be written as stub constructors and placed in the private section so no one will accidentally call it.

(C++) Keep in mind that constructors cannot return errors (or anything else). For this reason there is merit in keeping the constructor simple. If there could be problems in the constructor, keep in mind, you will need to provide a way for the user to detect that. For example, if you dynamically allocate memory in the constructor. You might choose to create an isValid() type of function. Possibly, it could have an implementation as simple as this:

bool MyClass::isValid() const {
return myPtr != 0;
}

This would return true if the memory allocation in the constructor was successful. Alternatively, you will need to have the other public member functions able to return an error in the case that something went wrong. For example, if we have a class Automobile, then tried to allocate memory for an Engine, but failed, the other methods that depend on the Engine (like start()) would have to return an error.

1.5.12. Destructors

(C++) All classes which allocate resources which are not automatically freed (e.g., have pointer variables) should have a destructor which explicitly frees the resources. Since C++ guarantees that deleting a pointer containing zero will do nothing, there is no need to check for zero before deleting. In general, set all pointers to zero after deleting them.

Since any class may someday be used as a base class, destructors should be declared virtual, even if empty.

1.5.13. Argument Passing

(C++) If the argument is small and will not be modified, use the default pass by value. If the argument is large and will not be modified, pass by const reference. If the argument will be modified, pass by reference. For example:

void A::function(int notChanged); // default: pass by value

void B::function(const C& bigReadOnlyObject) // pass by const reference

void C::function(int notChanged, int& result); // pass by reference

1.5.14. Default Arguments

(C++) Where possible, use default arguments instead of function overloading to reduce code duplication and complexity.

1.5.15. Overriding Virtual Functions

(C++) When overriding virtual functions in a new subclass, it is advisable to explicitly declare the functions as virtual. Although not required by the compiler, this aids maintainability by making clear that the function is virtual without having to refer to the base class header file.

1.5.16. Const Member Functions

(C++) It is recommended that all member functions which do not modify the member variables of an object be declared const (example: func(...) const {...}). This allows these functions to be called for objects which were either declared as const or passed as const arguments.

(C++) It is recommended that all member function parameters be declared const (example: func(const int i){...}) when possible.

1.5.17. Referencing Non-C++ Functions

(C++) Use the extern "C" mechanism to allow access to non-C++ (not just C) functions. This mechanism disables C++ name mangling, which allows the linker to resolve the function references. For example:

extern "C" {

 void aFunction(); // single non-C++ function prototype

}

extern "C" {

#include "functions.h" // library of non-C++ functions

}

1.5.18. NULL Pointer

(C++) Use the number zero (0) instead of the NULL macro for initialization, assignment, and comparison of pointers. The use of NULL is not portable, since different environments may define it to be something other than zero (e.g., (char*)0).

1.5.19. Enumerated Types

(C++) Use enumerated types instead of numeric codes. Enumerations improve robustness by allowing the compiler to perform type-checking, and are more readable and maintainable.

1.5.20. Terminating Stream Output

(C++) There are times when you will want the functionality of the iostream manipulator endl to terminate an output line, instead of the newline character \n. In addition to being more readable, the endl manipulator not only inserts a newline character but also flushes the output buffer.

1.5.21. Returning References

(C++) Returning references can be problematic, but if you follow this simple rule, it will be no problem at all. Never return a reference to an object that was allocated in any way inside the function in question. For example, we have a member function MyClass::f that returns a reference to a MyClass. Note the comments in this example:

MyClass & MyClass::f(MyClass & in) {
MyClass tmp;
MyClass * tmpPtr = new MyClass;
// ……Check pointer, then do some processing

return tmp; // Error, tmp automatically allocated within function
return tmpPtr; // Error, tmp dynamically allocated within function
return in; // okay. Remains in scope after function
return *this; // okay. Remains in scope after function
}

Even the dynamically allocated memory will have a possibility of being leaked. You might be able to catch it in some cases, but when you chain function calls, you cannot always catch it. Concerning the automatic variables, the program could later access memory that it shouldn't because the automatic variable went out of scope. (Since it is a reference, it is not copied.)

1.5.22. Encapsulation

(C++,Java) Instance variables of a class should not be declared public. Open access to variables reduces the control the object has over its specific implementation. It also causes needless dependency on the specific implementation one chose. The public section should be used for methods that represent the concept of that class only.

(C++) Putting variables in the private section is preferable over the protected section, for more complete encapsulation. Use get and set methods in either protected or public if needed.

1.5.23. Default Constructors

(Java) Where possible, define a default constructor (with no arguments) so that objects can be created dynamically using Class.newInstance(). This exploits the power of Java to dynamically link in functionality that was not present at compile time.

(C++) It's recommended that you always have a constructor of some kind (in addition to a copy constructor). At the bare minimum, you should have a default constructor explicitly defined. If you do not need one, then create a stub default constructor in the private section. The goal here is to prevent the compiler from automatically creating a default constructor for you (and worse yet, it puts it in the public section). The automatically generated one will likely not initialize the way you would want. If you have a parameterized constructor, the compiler will not create a default constructor for you. Likewise, if you have a default constructor in the private section, the compiler will not generate one for you.

1.5.24. Importing Packages

(Java) Use full package names instead of wildcards when importing to improve comprehensibility and provide context.

1.5.25. Exception Handling

(C++) In general, return an error instead of throwing an exception. Exceptions should only be used in truly exceptional conditions. They may be useful when:

· They can significantly clean up code by reducing error checks around normal logic.

· A needed return type cannot support returning an error.

· An error condition requires a lot of information, or information that is sufficiently different from the normal (non exception) case.

Remember, it can be hard to trace where an exception originated. While it is better than a goto, it has some of the same bad characteristics (in that it is hard to trace). If you choose to use exceptions in your code, remember to carefully document your code, especially the use of the objects being thrown.

If you have a class that uses heap memory, you should likely not use exceptions. Finding memory problems in this scenario is very difficult.

There is a concern about declaring the exceptions a method may potentially throw. Example:

int myfunction() throw(MyExceptionClass)
{.. function definition; }

While this can be considered good documentation, it is at best a questionable practice, and in the author's opinion is a bad choice. The reason is because if the function's programmer forgets to declare an exception that he/she might throw, the program will abort if that exception is thrown. What makes matters much worse is that, even if the caller tries to catch the exception (that was not declared) it will still abort. This makes declaring exceptions a very dangerous practice. If no exception declaration is present, the caller can always catch all exceptions. Therefore, exception declaration is strongly discouraged.

1.5.26. Checking Return Values

There are far too many times that programmers are tempted to skip the checking of return values. Specifically:

1. The return of a new statement should always be checked to be sure that the memory was successfully allocated.

2. The return of getenv() (and other UNIX type calls) must always be checked to see that it was successful (and in getenv's case, check that the environment variable was found).

Of course, this holds true for all returns, even returns from your own functions. Within a function, any error should be reported. When using a function, all errors should be checked for.

1.6. Additional Coding Standards and Style Guides

For additional background and suggestions, there are a number of coding standard documents available on the Web:

· Recommended C Style and Coding Standards (Revised Indian Hill)

· http://www.psgd.org/paul/docs/cstyle/cstyle.htm

· Todd Hoff's C++ Coding Standards

· Programming in C++, Rules and Recommendations (Ellemtel)

· Doug Lea's Draft Java Coding Standard

Based on a document by Jeff Johnson and Mark W. Rice from the Vision 2000 CCS project.
2. Perl Coding Standard

2.1. File Organization

Every source file must contain the following items:

1. File name

2. General description of the code contained in the file

3. The name of the initial author and initial creation date

4. Release info

5. Source code

6. Change history

Use this template for new Perl files. This template includes the necessary CVS keywords and placeholders for the required file prolog elements.

#!/usr/bin/perl

#

File:

#

Description:

#

Author:

Date:

#

#

Functions

... list of functions defined in this file

#

my $release = ' Id $Name$ ';

print $release;

#

... Your code here ...

#

Change History:

Log

The CVS keyword strings are assigned to a variable and print it in order to identify the version of the software that is being run. This is required to implement software version auditing as described in the GLAST MOC CM Plan. Printing the release is, of course, not necessary in a Perl module file (.pm). Non-interactive Perl scripts should output the release info to a log file.

Each subroutine must be preceded by a prolog that consists of comments describing the subroutine including at a minimum

· A one line description of the purpose of the subroutine.

· Description of the arguments and any return value.

· Algorithm or implementation approach

The audience of the prolog is both the user that calls the subroutines and the developer who may need to modify the code.

2.2. Naming Conventions

The following table summarizes the naming conventions:

	Identifier
	 Convention

	subroutine, method
	meaningful_name

	variable
	$meaningful_name or $_meaningful_name

	source file
	meaningful_name.pl, less than 12 characters if users will be regularly typing it on a command line

	package file
	MeaningfulName.pm

Choose mnemonic identifiers. If you can't remember what mnemonic means, you've got a problem.

While short identifiers like $gotit are probably ok, use underscores to separate words. It is generally easier to read $var_names_like_this than $VarNamesLikeThis, especially for non-native speakers of English. It's also a simple rule that works consistently with VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves lowercase module names for "pragma" modules like integer and strict. Other modules should begin with a capital letter and use mixed case, but probably without underscores due to limitations in primitive file systems' representations of module names as files that must fit into a few sparse bytes. Also, mixed uppercase and underscores is unnecessary, harder to read, and harder to type. Use underscore or uppercase to separate words but not both.

You may find it helpful to use letter case to indicate the scope or nature of a variable. For example:

$ALL_CAPS_HERE
constants only (beware clashes with perl vars!)

$no_caps_here

function scope my() or local() variables

$global_var_g

Append _g to global variables

Function and method names seem to work best as all lowercase. E.g.,

 $obj->as_string().
You can use a leading underscore to indicate that a variable or function should not be used outside the package that defined it.

2.3. Style Guidelines

From http://www.perldoc.com/perl5.6/pod/perlstyle.html as of 6 FEB 2004. Since the internet is empheral, here is an edited copy.

Each programmer will, of course, have his or her own preferences in regards to formatting, but there are some general guidelines that will make your programs easier to read, understand, and maintain. [If you are modifying existing code, adapt to the style used in the original. If it is inconsistent, then use the style described here.]

The most important thing is to run your programs under the -w flag at all times. You may turn it off explicitly for particular portions of code via the use warnings pragma or the $^W variable if you must. You should also always run under use strict or know the reason why not. The use sigtrap and even use diagnostics pragmas may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry (Wall, Perl inventor) cares strongly about is that the closing curly bracket of a multi-line BLOCK should line up with the keyword that started the construct. Beyond that, he has other preferences that aren't so strong:

· 4-column indent.

· Opening curly on same line as keyword, if possible, otherwise line up. [This is also good for emacs because when you select the closing curly brace, emacs will show you the line of the matching open curly brace. This lets you see if the nesting is correct.]

· Space before the opening curly of a multi-line BLOCK.

· One-line BLOCK may be put on one line, including curlies.

· No space before the semicolon.

· Semicolon omitted in "short" one-line BLOCK.

· Space around most operators.

· Space around a "complex" subscript (inside brackets).

· Blank lines between chunks that do different things.

· No space between function name and its opening parenthesis.

· Space after each comma.

· Long lines broken after an operator (except "and" and "or").

· Space after last parenthesis matching on current line.

· Line up corresponding items vertically.

· Omit redundant punctuation as long as clarity doesn't suffer.

Larry has his reasons for each of these things, but he doesn't claim that everyone else's mind works the same as his does.

Here are some other more substantive style issues to think about:

2.3.1. Readable

2.3.1.1. Be straight forward

Just because you CAN do something a particular way doesn't mean that you SHOULD do it that way. Perl is designed to give you several ways to do anything, so consider picking the most readable one. For instance

 open(FOO,$foo) || die "Can't open $foo: $!";

is better than

 die "Can't open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier. On the other hand

 print "Starting analysis\n" if $verbose;

is better than

 $verbose && print "Starting analysis\n";

because the main point isn't whether the user typed -v or not.

Similarly, just because an operator lets you assume default arguments doesn't mean that you have to make use of the defaults. The defaults are there for lazy systems programmers writing one-shot programs. If you want your program to be readable, consider supplying the argument.

2.3.1.2. Use Parentheses

Along the same lines, just because you CAN omit parentheses in many places doesn't mean that you ought to:

 return print reverse sort num values %array;

 return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on the % key in vi.

Even if you aren't in doubt, consider the mental welfare of the person who has to maintain the code after you, and who will probably put parentheses in the wrong place.

2.3.1.3. Loops

Don't go through silly contortions to exit a loop at the top or the bottom, when Perl provides the last operator so you can exit in the middle. Just "outdent" it a little to make it more visible:

 LINE:

for (;;) {

 statements;

 last LINE if $foo;

 next LINE if /^#/;

 statements;

}

Don't be afraid to use loop labels--they're there to enhance readability as well as to allow multilevel loop breaks. See the previous example.

2.3.1.4. Use Return Values

Avoid using grep() (or map()) or `backticks` in a void context, that is, when you just throw away their return values. Those functions all have return values, so use them. Otherwise use a foreach() loop or the system() function instead.

2.3.1.5. Portability

For portability, when using features that may not be implemented on every machine, test the construct in an eval to see if it fails. If you know what version or patchlevel a particular feature was implemented, you can test $] ($PERL_VERSION in English) to see if it will be there. The Config module will also let you interrogate values determined by the Configure program when Perl was installed.

2.3.2. Line Formatting

If you have a really hairy regular expression, use the /x modifier and put in some whitespace to make it look a little less like line noise. Don't use slash as a delimiter when your regexp has slashes or backslashes.

Use the new "and" and "or" operators to avoid having to parenthesize list operators so much, and to reduce the incidence of punctuation operators like && and ||. Call your subroutines as if they were functions or list operators to avoid excessive ampersands and parentheses.

Use here documents instead of repeated print() statements.

Line up corresponding things vertically, especially if it'd be too long to fit on one line anyway.

 $IDX = $ST_MTIME;

 $IDX = $ST_ATIME if $opt_u;

 $IDX = $ST_CTIME if $opt_c;

 $IDX = $ST_SIZE if $opt_s;

 mkdir $tmpdir, 0700 or die "can't mkdir $tmpdir: $!";

 chdir($tmpdir) or die "can't chdir $tmpdir: $!";

 mkdir 'tmp', 0777 or die "can't mkdir $tmpdir/tmp: $!";

Always check the return codes of system calls. Good error messages should go to STDERR, include which program caused the problem, what the failed system call and arguments were, and (VERY IMPORTANT) should contain the standard system error message for what went wrong. Here's a simple but sufficient example:

 opendir(D, $dir) or die "can't opendir $dir: $!";

Line up your transliterations when it makes sense:

 tr [abc]

 [xyz];
2.3.3. General

Think about reusability. Why waste brainpower on a one-shot when you might want to do something like it again?

Consider generalizing your code. Consider writing a module or object class. Consider making your code run cleanly with use strict and use warnings (or -w) in effect. Consider giving away your code. Consider changing your whole world view. Consider... oh, never mind.

Be consistent.

Be nice.

3. Tcl/Tk Coding Standard

3.1. File Organization

Every source file must contain the following items:

1. Release info

2. File name

3. Description of the code contained in the file

4. The name of the initial author and initial creation date

5. Source code

6. Change history

set Release {Id $Name$}

#

File:

#

Description:

#

#

Author:

Date:

#

your code goes here

Change History:

Log

The names with a dollar sign ($) are CVS keywords. They are expanded when the file is retrieved from the CVS repository. The keywords and the configuration management process are described in the GLAST MOC CM Plan.

The file name is optional since it is provided in the CVS Id keyword.

The description is an overall description of purpose of the code contained in the file. It can include a discussion of assumptions and algorithms. This would be the place to describe dependencies among the subroutines, such as "The init subroutine must be called before calling the do_it subroutine."

Each subroutine must be preceded by a prolog that consists of comments describing the subroutine including at a minimum

· A one line description of the purpose of the subroutine.

· Description of the arguments and any return value.

· Algorithm or implementation approach

The application's startup script must also contain the command to execute the Tcl/Tk interpreter, wish. Place these lines at the beginning of the file.

#!/bin/ksh

the next line restarts using wish \

exec wish "$0" "$@"
These lines invoke the Korn shell which sets the environment variables, and then the starts the wish program found in the command path. During development, however, the script can be invoked from the command line of the wish interpreter. The backslash in the second comment is interpreted by Tcl as a continuation character so that the following line with the exec wish command is treated like part of the comment and is not executed again.

3.2. Naming Conventions

The following table summarizes the naming conventions:

	Identifier
	 Convention

	procedure
	meaningfulName

	package, namespace
	meaningfulName Short names are preferred

	variable
	MeaningfulName

	source file
	<package><name>.tcl

The <package> groups the files by related package or function.

The <name> contains upper and lower case letters (no underscores) for readability.

Example:

takoLoadSave.tcl where tako is the package

targetDButil.tcl where targetDB is the package

3.3. Style Guidelines
3.3.1. Packages and namespaces

Tcl applications consist of collections of packages. Each package provides code to implement a related set of features. Packages are the units in which code is developed and distributed. A package is designed with reuse in mind. Each package will have an associated namespace. Namespaces help to hide private aspects of packages and avoid name collisions. The header page of a tcl file that defines a package contains the package proved command and the namespace definition command, in addition to the normal tcl file content. This is illustrated below.

package provide dbTarg 1.0

namespace eval dbTarg {

namespace export dbTarg

variable filename

…

}

A pkgIndex.tcl file is used to create packages that can be loaded on demand by any Tcl script. Like a tclIndex file, a package specifies a set of Tcl or shared libraries that can be loaded when needed. A package must be explicitly requested using the package required command. Use pkg_mkIndex command to create a package index file.

3.3.2. Procedure prolog

Each procedure must be preceded by a prolog that consists of comments describing the procedure, including at a minimum

· A one line description of the purpose of the subroutine.

· Description of the arguments and any return values.

· Algorithm or implementation approach

· Usage of global variables and files.

A sample procedure prolog follows:

targDB::read – read the database

#

Arguments:

targetDB – the complete path name of the target database file

#

Returns:

1 – success, target database was read without error

0 – operation failed, see log file for reason

#

Approach:

#

The target database is stored as Tcl set commands so just

"source" the file to

read the entire target database into memory.

This approach reduces maintenance because the only code that

needs to know the structure of the database is the write proc.

#

3.3.3. Coding Conventions

This sections lists some low-level coding rules. Consistent usage should improve code readability. See the documents listed under Additional Style Guides for a discussion of the justification for these rules.

· Indent 4 spaces

· Comments on full lines – avoid tacking comments to the end of code.

· Blank line between comment block and next line of code.

· Lines must be less than 80 columns – to avoid line wrap in most editors or truncation when printed.

· Indent continuation lines by 8 spaces

· One command per line

· Curly braces: { goes at the end of the line. } lines up with the control statement.

· Parenthesize expressions – more efficient for the interpreter, explicitly indicates operation precedence.

· Always have a return statement – by default Tcl will return the value of the last Tcl statement executed. Use a return (with no arguments) even when the procedure has no return value, so you don't get an unanticipated value.

3.4. Additional Style Guides

Ray Johnson, Sun Microsystems, "Tcl Style Guide", http://dev.scriptics.com/doc/styleGuide.pdf

John Outsterhout, Sun Microsystems, "Tcl/Tk Engineering Manual, http://dev.scriptics.com/doc/engManual.pdf

