
GLAST SSC CVS Repository

This document describes the use of the GSSC CVS repository, its layout and general
guidelines for the layout of directories within GSSC developed packages. For detailed
information about using CVS look at the CVS Manual which can be found at the CVS website:
https://www.cvshome.org/.

CVS Repository Location
The GSSC’s CVS repository is located on daria.gsfc.nasa.gov and maintained by the

LHEA system administrators. Use of the repository requires a username and password. The
CVSROOT for our repository is

:pserver:username@daria.gsfc.nasa.gov:/glast

CVS Repository Access
Here's a brief tutorial on using the CVS server. It is aimed at a developer who has write
permission in the glast area only. Start with

cvs -d :pserver:username@daria.gsfc.nasa.gov:/glast login

which will prompt you for your CVS password. Once you've logged into a particular repository
from a particular machine you won't need to repeat the login step. Then

cvs -d :pserver:username@daria.gsfc.nasa.gov:/glast checkout GSSC

should check out the whole GSSC package directly from its repository and put it in your local
directory under GSSC/.

If you want to avoid having to type the -d :pserver:username@daria.gsfc.nasa.gov:/glast every
time you start you should set the CVSROOT environment variable. ie.

setenv CVSROOT :pserver:username@daria.gsfc.nasa.gov:/glast (csh version)
export CVSROOT=”:pserver:username@daria.gsfc.nasa.gov:/glast” (sh version)

Once you've got things checked out you can skip the -d :pserver business when executing
commands inside a checked-out tree, ie:

 cvs log mytool.c
 cvs update
 cvs diff
 cvs commit

should all work as you'd expect. On any properly configured machine one should be able to
execute "info cvs" to get detailed help on using CVS.

1

Top Level CVS Directory Structure
All GSSC software being developed will be stored in the GSSC directory under the head

glast directory in the repository. This will allow the checkout of the entire GSSC software
system with a single command to checkout the GSSC directory as illustrated above. Under the
GSSC directory the following directory structure will exist:

daria:/glast

GSSC

Operations

Database

UserSupport

Ingest

AdminTools

GSSC_Ext

SAE

There are other directories under the daria:/glast head from previous usage of the CVS
repository. This code will eventually be either removed or moved into the appropriate place in
the new data structure. The SAE directory will be used to hold the SAE code once maintenance
of that code becomes the responsibility of the GSSC later in the mission.

All code will be checked into the CVS repository under one of these six directories as
follows:

Operations: This directory will contain all the software tools from the Operations subsection.
Database: This directory will contain all the software tools from the Data Archive and Software

Support subsection
UserSupport: This directory will contain all the software tools from the User Support subsection
Ingest: This will contain all the software associated with the data ingest system such as OPUS

scripts, DTS scripts, etc.
AdminTools: This directory will contain the software tools for administration of GSSC software

and other general tools such as the Nightly Build system, the Paging tool, etc.
GSSC_Ext: This directory will contain all external libraries used by the other GSSC software

such as MPICH, HTM,etc.

Package Directory Structure
Packages checked into the repository should have a descriptive name. For each package

developed at the GSSC, whether it is a tool or a library, the directory structure inside the
package should contain directories from the following list:

2

bin: The directory to hold the executable scripts or binaries. This directory should be empty in
the CVS repository as it will be populated by the build system.

cmt: The directory to hold the CMT config and requirements files if CMT is used.
config: The directory to hold any configuration files needed by the tool to execute. This

includes PIL parameter files if appropriate.
data: This directory is to contain any test data needed to test the software.
doc: This directory is to contain any documentation for the package including the doxygen

Doxyfile when appropriate.
include: This directory is to contain all the header files for the package
lib: This directory is to hold all the compiled libraries and/or script modules for the packages.

Like the bin directory, this directory should be empty in the CVS repository and filled
locally by the build system.

pfiles: This directory would hold pil parameter files if needed by the project.
src: The directory to hold all the source code and scripts. The script modules are copied from

here to the lib directory as part of the build process.
src/test: This directory is to hold all the code necessary to test the package. The code in this

directory will be build and executed as part of the nightly build system.

Additionally, in the main package directory, there should be a makefile that the nightly build
system could execute to build the project and run the tests. Thus the directory for the photon
database, which doesn't use CMT or pil, would look like this:

daria:/glast

GSSC

Database

bin
config
data
doc
include
lib
src

test

photonDatabase

Makefile

Checking a New Package into the Repository
At some point, you have a new package that needs to be checked into the repository.

This is done by following these steps:

3

1) Move to the root directory of the package you have created:

cd newPackageDir

where newPackageDir is the directory containing the package code

2) Import the package into to repository by issuing the following command replacing the
italicized item appropriately:

cvs -d $CVSROOT import -m “Initial package import message”
GSSC/category/newPackageDir GSSC tag

The string after the -m is a comment about the initial package check-in. If the -m and
following string are omitted, a text editor will appear asking you to type in a message. The
category corresponds to one of the six areas specified above in the discussion of the
repository. newPackageDir is the directory name that your code will be stored in in the
repository. Finally, the tag should be the version number of the code you are checking in,
typically v1.

At this point the code is checked in to the repository and can be checked out, updated, etc using
normal CVS commands.

Modifying an Existing Package

Check out the package

To modify an existing package first check the package out of the repository by issuing
the following commands:

cd root/directory/for/files
cvs -d $CVSROOT/GSSC/category checkout -d directory package

where root/directory/for/files is your development directory, category corresponds to the sub
folder under GSSC in the repository structure, directory is the local directory you want the
project extracted into and package is the name of the package directory in the CVS repository
you want to check out.

For example to check out the photonDatabase package (part of the Database category)
into my Development directory in a subdirectory called pdb I would issue the following
commands:

cd Development
cvs -d $CVSROOT/GSSC/Database checkout -d pdb photonDatabase

Once the package has been checked out, you can edit the files, add files and add
directories as needed to develop the code.

Adding Files or Directories to the Project

If you create new files or directories in the project, you need to tell CVS about them so
that they are added to the repository. This is done using the cvs add command. To add a file or
directory to the repository simple type

4

cvs add name

where name is the name of the file or directory you wish to add to the repository.

Committing Changes

When you are done edited the project or have make changes that you want to commit
into the repository. Issue the following commands to check-in your changes

cd directory
cvs commit -m “Message about change”

where directory is the root directory of the package that you checked the code out into. If you
omit the -m flag and message a text editor will appear for you to enter the message into. You
should always include some message with a commit command to describe what changes were
made to the code.

Use of CMT
As a majority of the internal GSSC software will be scripts and software coming from

other build systems, the GSSC will not be requiring the use of CMT as it build manager for the
internal GSSC software. However, if a developer wishes to use CMT they may. If they do so,
the following Makefile should be included as the Makefile in the root directory of the package
(ie on the same level as the cmt and src directories).

5

Makefile stub to use as the root directory makefile for CMT
packages when developing in Eclipse and using the CMT package
with our nightly build system. This will all the developer to
use the build and rebuild Project options from the Project menu
and still have CMT do the building of the project. It also
allow the nightly build system to execute a 'make' in the
primary directory and have the package built.
#
Created 07/20/04 - Tom Stephens

A default target to execute if the user executes a make
with no targets.
all:

$(MAKE) all -C cmt

Any specified target is redirected to the cmt directory for
building.
%:

$(MAKE) $* -C cmt

Figure 1 - Root level Makefile for use with CMT projects

