
Science Timeline Submit Detailed Design
Marilyn Mix
20 SEP 2004

(based on GSSC Software Design Specification.
Includes Design Review feed back)

* NEED TO MODIFY THE ICD FILENAME FOR THIS TO WORK.

Op110 Science Timeline Submit

Purpose:
Delivers the preliminary science timeline and final observatory timeline package to the
MOC. The submitted timeline is archived.

FRD Requirements Satisfied: 5.4.1.4.5, 5.4.1.4.6

Interface:
Command line tool

Input and Output Files: Write the PGP signature string to the message file (call
get_pgp to get the value)

Write the PGP signature string to the message file (call get_pgp to get the value)

Refer to the MOC Operations Data Products ICD for the LAT and GBM product formats
and naming conventions.
See TAKO User Guide for science timeline format and naming convention.

Input:

1. Configuration file
and

2. Product files
a. Preliminary Science timeline (TAKO output)

 or
a. Final Science timeline (TAKO output)
b. LAT command timeline (optional)
c. GBM command timeline (optional)
d. LAT PROCs (optional)
e. GBM PROCs (optional)
f. LAT loads (optional)
g. GBM loads (optional)
h. Message file for LAT command timeline (optional)
i. Message file for GBM command timeline (optional)
j. Message file for LAT PROCs (optional)
k. Message file for GBM PROCs (optional)
l. Message file for LAT loads (optional)

m. Message file for GBM loads (optional)

Output:

1. Science timeline file sent to MOC
1) Preliminary Science timeline package – Science timeline, Science Timeline

message file, Package Manifest
2) Observatory timeline package – Science Timeline, LAT/GBM Timelines,

LAT/GBM Loads, LAT/GBM PROCS, LAT/GBM messages files, Science
Timeline message file, Package Manifest

2. System status database updates – Major processing messages
3. Log file – detailed processing messages

Description:
The GSSC generates a preliminary science timeline 3+ weeks before the timeline is
implemented, and a final science timeline a few days before implementation. For the
preliminary science timeline, this tool creates the message file and sends the timeline.
For the Observatory Timeline Package, this took creates the package, including the
science timeline's message file and the package manifest, and sends it to the MOC. In
both cases, this tool archives the transmitted file and logs this transmission.

Candidate: File transfer software and custom scripts

Ops Software Release: 2

Implementation Approach:
Develop a set of Perl scripts to implement the tool.
send_timeline.pl – create package and initiate transfer
resend_timeline.pl – resend a package

Assume there exists (or write) Perl packages that contains these functions:

create_message_file – given the data file name, list of product-specific header
keyword-value pairs, and message file name, create the message file. This
sub adds the standard keywords and the PGP signature.

update_message_file – Append keyword/values passes by caller. Add the PGP
signature, new checksum.

initiate_transfer – initiates file transfer using the file transfer system
log_message – log status and error message to a local (or system-wide) log file.

Given module name, severity, and the message text. Adds timestamp and
writes to a file.

archive_products – archive the transmitted files
log_status_db – add entry in status database

Use the existing Parameter Manager Module (glitch:/devtools/src/Processman/lib) to
parse the configuration file.

The configuration file contains:

• MOC host name
• proxy user name
• transfer staging directories
• database location
• process log file directory
• unsent file list filename
• logging verbosity (can be overridden by command line)

MOC host that receives files
MOC_host_name glastopen.gsfc.nasa.gov

User name for the MOC host
user_name gssc

Staging directory
staging_dir $OPS/tlstage

Log file directory
log_dir $OPS/logs

Log message verbosity (can be overidden by command line option)
0 = none
1= major events
2= add routine events,
3 = add debug output

log_level 1

Name of the file for saving uncompleted transfers
unsent $OPS/tlstate/unsent_files.txt

Use of a configuration file allows different environments for testing and operations
without modifying code. It also enables program parameters to be changed without
modifying and redelivering code.

Script name:
send_timeline.pl

Command line arguments and options:
1. –c <configuration file path> (optional, if omited use default configuration file name)
2. –t <package type> prelim[inary] or final
3. Package contents:

a. list of files to include in the package (not including message files)

OR
b. –w <week#> planning week number (launch is week 1, incremented through
the life of the mission)

4. –v (optional, list package manifest without sending it)
5. –d <n> (optional, logging verbosity,

0 = none
1 = major events
2 = add routine events,
3 = add debug output

Examples:

Send the preliminary science timeline

% send_timeline.pl $OPS_CONFIG/send_timeline.cfg –t prelim \

$TAKO_OUTPUT/S059_2008051PRELIM.00

Send the final observatory timeline package

% send_timeline.pl $OPS_CONFIG/send_timeline.cfg –t final –w 123

Send the final science timeline, plus LAT and GBM stored commands

% send_timeline.pl $OPS_CONFIG/send_timeline.cfg –t final \

$TAKO_OUTPUT/S056_2008030_ATS.00 \
$LAT_TL/L056_2008030_ATS.00 \
$GBM_TL/G056_2008030_ATS.00

Send the final science timeline, plus LAT and GBM stored commands
and PROCs and load files. (Program will assume the message file is in the same
directory as its parent,)

% send_timeline.pl $OPS_CONFIG/send_timeline.cfg –t final \

$TAKO_OUTPUT/S056_2008030_ATS.00 \
$LAT_LOADS/L056_2008030switchmode.00 \
$LAT_LOADS/L056_2008030resetcount.03 \
$LAT_PROCS/L056_2008030luplinktable.msg \
$LAT_PROCS/ L056_2008030lcalibrate.msg \
$LAT_TL/L056_2008030_ATS.01 \
$GBM_LOADS/G056_2008030setcalmode.00 \
$GBM_PROCS/G056_2008030guplinktab.msg \
$GBM_PROCS/G056_2008030gcalibrate.msg\
$GBM_TL/G056_2008030ATS.00

Algorithm:

General: All errors are logged to stderr and (after initialization) the process log file.
 Program logs all file system errors (wrong permissions, missing files) and

terminates.

Assumptions:
Checksums were checked with the file was received by GSSC.
Checksums will be checked by MOC.

1. Initialize process logging.
2. Print CVS release tags
3. Parse and validate command line arguments. [See Bob for command line parser

code fragment.]
4. Read configuration file. Validate that configuration file exists/readable and

directories exist/writable/readable as appropriate.
5. Initialize process logging.
6. Log program start

7. Query the approved command database to get the list of files approved files.
8. If filenames were entered on the command line, compare them against the

approved files. warn if no match
9. Copy all input files to the staging area. Log copy errors.
10. If science timeline exists

a. Create the message file for the science timeline. Log file creation errors.
else

b. Log warning that science timeline was not included.
11. If this is the final timeline then:

a. For each instrument timeline file:
i. Create the message file name based on the instrument data

filename. Log error if the message file does not exist.
ii. Copy to message file the staging area. Log copy errors

iii. Update the message file [I recall that the GSSC wanted to add
information the the instrument message files, approvals, etc.]. Log
file creation errors.

b. Create the manifest file for the package [list of all files being transferred].
Log file creation errors.

12. Tar the files into a tar file named according to the ICD. Log file creation errors.
13. Add file name to the unsent files list, just in case something goes wrong.
14. Initiate file transfer. Log file transfer status
15. If successful transfer, remove file to unsent files list
16. Log program termination

Purpose: resend any tar files that failed transfer. Don't create tar file, just initiate the
transfer again, assuming the computer or network problem was resolved.

Script name:
resend_timeline.pl

Command line arguments:
1. configuration file path
2. path of unsent file (optional, or use default unsent file list)

Examples:

Resend using unsent file list

% resend_timeline.pl $OPS_CONFIG/send_timeline.cfg

Resend specific file
% resend_timeline.pl $OPS_CONFIG/send_timeline.cfg \
 $OPS_OUTPUT/OTP_2006123103459.tar

Algorithm:

General: All errors are logged to stderr and (after initialization) the process log file.
 Program logs on file system errors (wrong permissions, missing files) and

terminates.

1. Initialize process logging.
2. Print CVS release tags
3. Parse and validate command line arguments.
4. Read configuration file. Validate that configuration file exists/readable and

directories exist/writable/readable as appropriate.
5. Initialize process logging.
6. Log program start

7. If file is specified then

a. Put it in resend list
else

b. Read resend list from the unsent file list
8. Foreach file in the resend list

a. Initiate file transfer. Log file transfer status.
b. If successful, remove entry from unsent files list

9. Log program termination

Description of subroutines in library (Perl package file(s))

create_message_file – given the data file name, list of product-specific header keyword-
value pairs, and message file name, create the message file that accompanies the data file.
This sub adds the standard keywords and the PGP signature.

Arguments:
1. List of product-specific keyword/value pairs
2. data file name, full path or blank
3. message file name, full path or blank

Either data file name or message file name must be specified, both cannot be blank.
Sometimes a standalone message file (no data file) may be needed, so the data file name
is optional. If a data file name is provided, the message file name is optional since it is
based on the data file name.

Output:
Create and write the message file
See MOC Operations Data Products ICD

Returns:
List containing two elements:
1. Return status string: "OK" or Error message
2. Message file name, full path

Use the FITSIO Perl bindings.

Algorithm:

1. Parse and validate the input parameters.
2. If both the data file anme and message file name are blank, then

set the error message and return ERROR
3. If message file name is blank then

Create the message file name based on the data file name
4. Open the message file for output [It will be in the same directory as the data file]
5. Output the standard header records.
6. Output the product-specific keyword/value records.
7. Output the data file keyword
8. Call compute_MD5 to compute the MD5 checksum for the data file
9. Output the data file MD5 checksum
10. Close the message file
11. Call compute_MD5 to compute the MD5 checksum for the message file
12. Open the message file
13. Append the message file MD5 checksum record
14. Append the PGP signature string to the message file (call get_pgp to get the

value)
15. Close the message file

16. Return a list containing "OK" and the message file name.

ON ERROR:
Return a list containing the error message string and a blank message file name.

update_message_file – Append keyword/values passes by caller. Replace the PGP

signature.

Input:
1. List of keyword/value pairs
2. message file name, full path

Output:
Updated message file
See MOC Operations Data Products ICD

Returns:
List containing two elements:
1. Return status string: "OK" or Error message
2. Message file name, full path

Use the FITSIO Perl bindings.

Algorithm:
Parse and validate the input parameters.

Open a temporary file.
Copy the message file contents.
Write the additional keyword/value pairs
Write the PGP signature string to the message file (call get_pgp to get the value)
Call FITS function to compute checksum (not MD5)
Close the message file

Return a list containing "OK" and the message file name.

ON ERROR:
Return a list containing the error message string and a blank message file name.

initiate_transfer – initiates file transfer using the file transfer system

Monitor transfer status
Log success or report unrecoverable problems
Log untransferred files for retransfer later when problem is resolved
If succesful, then clean up directories

Some of this can be done by the chosen FTS.

log_message – log status and error message to the local log file.

Input:
Log file descriptor
Module name – e.g. ToO Orderer
Severity – INFO, WARN, ERROR
Text – status message text.

Output:
Adds timestamp and stores message ot the file.

Returns: None

Algorithm:

Get system time and format it to desired date/time format.
Write timestamp, module name, severity, and text to to the file

archive_products – archive the transmitted files

TBD when the database schema and interface is defined.

Testing:
See Unit Test Plan in separate document (TBS)

1. Tests:
a. Tool activated from command line
b. Timeline archived properly
c. Timeline submitted to file transfer system correctly
d. Graceful handling of corrupted files
e. Graceful handling of bad command line input and missing message files

2. Files:
a. Sample preliminary science timeline
b. Sample final science timeline
c. Corrupted file
d. Sample LAT timeline and message files
e. Sample GBM timeline and message files

